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The use of spatially interactive forest landscape models has increased in recent years.
These models are valuable tools to assess our knowledge about the functioning and
provisioning of ecosystems as well as essential allies when predicting future changes.
However, developing the necessary inputs and preparing them for research studies
require substantial initial investments in terms of time. Although model initialization and
calibration often take the largest amount of modelers’ efforts, such processes are
rarely reported thoroughly in application studies. Our study documents the process
of calibrating and setting up an ecophysiologically based forest landscape model
(LANDIS-II with PnET-Succession) in a biogeographical region where such a model
has never been applied to date (southwestern Mediterranean mountains in Europe).
We describe the methodological process necessary to produce the required spatial
inputs expressing initial vegetation and site conditions. We test model behaviour on
single-cell simulations and calibrate species parameters using local biomass estimations
and literature information. Finally, we test how different initialization data—with and
without shrub communities—influence the simulation of forest dynamics by applying
the calibrated model at landscape level. Combination of plot-level data with vegetation
maps allowed us to generate a detailed map of initial tree and shrub communities.
Single-cell simulations revealed that the model was able to reproduce realistic biomass
estimates and competitive effects for different forest types included in the landscape,
as well as plausible monthly growth patterns of species growing in Mediterranean
mountains. Our results highlight the importance of considering shrub communities in
forest landscape models, as they influence the temporal dynamics of tree species.
Besides, our results show that, in the absence of natural disturbances, harvesting or
climate change, landscape-level simulations projected a general increase of biomass of
several species over the next decades but with distinct spatio-temporal patterns due
to competitive effects and landscape heterogeneity. Providing a step-by-step workflow
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to initialize and calibrate a forest landscape model, our study encourages new users
to use such tools in forestry and climate change applications. Thus, we advocate for
documenting initialization processes in a transparent and reproducible manner in forest
landscape modelling.

Keywords: calibration, Mediterranean area, LANDIS-II, PnET-Succession, forest landscape model, forest
succession, initial vegetation map, forest inventory

INTRODUCTION

Forests are indispensable ecosystems for human societies. Due to
their role as climate regulators, soil protectors and biodiversity
hotspots, forests provide a multitude of ecosystem services and
are fundamental elements in the world’s economy (Krieger, 2001;
Martínez Pastur et al., 2018). The potential adverse impacts
of global change on forest ecosystems emphasizes the need to
understand how to manage them in the future (Lindner et al.,
2014; Hof et al., 2017; Mina et al., 2017).

In recent years, the use of computational models has
been increasing in forest ecosystem research (Gustafson et al.,
2017; Shifley et al., 2017). Although empirical studies are of
fundamental importance for process understanding, simulation
models are nowadays recognized as useful tools to assess our
knowledge about the functioning of ecosystems as well as
essential allies when predicting future changes (Seidl, 2017).
Over the past decades, a large range of models were developed
to describe future dynamics in forest ecosystems (Keane et al.,
2015), from stand-scale empirical simulators to more complex
process-based models operating at landscape scale (Fontes et al.,
2010). Because of computational constraints, models integrating
fine-resolution processes (e.g., photosynthesis, specific growth
functions) at large scales in a spatially explicit framework were
rare, and smaller grain processes were often strongly simplified
(Elkin et al., 2012). However, these constraints are constantly
being reduced by the increase in computational power, allowing
for the flourishing of Forest Landscape Models (FLMs) which
integrate physiologically based processes from stand to landscape
level (Seidl et al., 2012; De Bruijn et al., 2014; Shifley et al., 2017;
Petter et al., 2020).

According to Jorgensen and Fath (2011), ecological models
comprise five elements: state variables, external variables,
parameters, mathematical equations, and universal constants.
The mathematical equations and universal constants are implicit
within the model structure, while the initial conditions of the state
variables (e.g., species biomass, species age), external variables
and parameter values are usually provided as inputs by the user
for each simulation study. In the case of FLMs, they represent
forests across the landscape in a spatially explicit way. The
landscape is depicted as a set of cells for which a series of state
and external variables are defined. These variables are used to
define the ecological processes taking place at cell level (e.g.,
growth, mortality among others) and at landscape level (e.g.,
seed dispersal, fire spread). For comprehensive reviews on the
development, structure and recent applications of FLMs see
Shifley et al. (2017); Keane et al. (2015), and He et al. (2017).

The above-mentioned structural elements are essential to set
up a simulation in a specific landscape. This requires the user to

obtain, prepare and organise comprehensive datasets to address
the two first key steps in applying FLMs: model initialization
(initial conditions of state and external variables) and calibration
of model parameters. The initial conditions of the state variables
describe the ecosystem at the beginning of the simulation. In turn,
external variables are those forces affecting the ecosystem without
being internal parts of it (Jorgensen and Fath, 2011). Most
FLMs require initial values of at least certain state and external
variables to start a simulation. As an example, the FLM LandClim
requires elevation or browsing intensity for initialization (Petter
et al., 2020). In addition to biophysical conditions (e.g., soil
types, climate maps or regions), essential initial conditions
for FLMs are vegetation maps describing which species are
present in the landscape at the beginning of the simulation
time. Decisions regarding the inclusion or exclusion of certain
species can be highly relevant in certain ecosystems (e.g., shrubs
in the Mediterranean area). Thus, these vegetation maps are a
keystone within these experiments since forest dynamics and
properties (biomass, available light, regeneration, etc.) are highly
driven by initial conditions and structure (Duveneck et al.,
2015; Scheller and Swanson, 2015). For example, most FLMs
require information of tree species and their age classes across
the landscape. This information can be very challenging to
obtain and estimate for large spatial scales without necessarily
combining multiple and complex datasets (Zald et al., 2014).
The generation of input data for FLMs can therefore require
significant time and skills, and often demands complementarity
with experimental research from long-term field studies (Shifley
et al., 2017; Scheller, 2018).

The calibration of model parameters has been defined as one
of the greatest challenges in modelling under environmental
changes (Keane et al., 2015; Scheller, 2018). Model parameters
are values used in model equations which represent processes
(Jorgensen and Fath, 2011). Most models simulating the
succession dynamics of vegetation require parameters describing
the behaviour of the species present in the landscape. These
parameters may differ for each model, but commonly refer
to species growth characteristics, fruit and seed dispersal,
reproduction strategies and absolute or relative measures of
tolerance to stress factors (Huber et al., 2018). A broad range
of sources can be used to fulfil these parameters, ranging
from empirical case-specific data collected by the modeller
to values of standard variables stored in global databases.
In either case, an evaluation of model outputs to identify
appropriate parameter values is usually required to ensure
that the model produces plausible outcomes at the local scale
(Gutiérrez et al., 2016; Duveneck et al., 2017). This evaluation
of parameter values is known as calibration (Mulligan and
Wainwright, 2013). During this phase, the different model
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sensitivity to some parameters over others should be considered
(McKenzie et al., 2019).

Successional processes and long-term projections in FLM
are highly sensitive to initial conditions and model parameters
(Scheller, 2018). Estimation of initial condition and calibration
procedures are typically described in the method section in
literature studies (e.g., Scheller et al., 2005; Boulanger et al., 2017),
but often not on a level of detail to allow full reproducibility
or with enough information to help non-modellers to setup a
new landscape from scratch. Even fewer provide access to inputs,
outputs and scripts in public repositories. The aims of this study
are twofold. First, documenting the process needed to initialize
and calibrate a FLM step-by-step, as an example for analogous
uses. Fulfilling this goal would encourage the application of
FLMs as scientific tools to assess future forest dynamics and
management adaptation under global change. Second, we aim
at testing different initialization data – with and without shrub
communities – by assessing the model ability to project forest
landscape dynamics in a biome where the model has not been
applied so far (Euro-Mediterranean region).

MATERIALS AND METHODS

Model Description
In this manuscript, we chose LANDIS-II as our reference FLM.
LANDIS-II1 (Scheller et al., 2007) is a FLM designed to simulate
forest dynamics at multiple spatial and temporal scales. It allows
a wide degree of complexity depending on a set of extensions
which can optionally be activated to simulate different processes
such as succession, disturbances (fire, wind, herbivory, and
pests) and management at different degrees of complexity (e.g.,
areas- and species-specific harvesting regimes, post-harvesting
planting). The spatial scale (i.e., cell resolution) is defined by
the user, which makes it very flexible and adaptable to a wide
variety of simulation experiments. In LANDIS-II, the landscape
is divided into ecoregions, which are subregions sharing similar
climatic conditions and soil characteristics. Trees in each cell are
represented as species-age cohorts, increasing the computational
efficiency of the model (De Bruijn et al., 2014).

Particularly, we used the PnET-Succession extension v.3.4
(De Bruijn et al., 2014; Gustafson et al., 2015). This extension
embeds the PnET-II ecophysiological model equations (Aber and
Federer, 1992). PnET-Succession simulates forest succession in
a more mechanistic way than previous approaches, representing
an advantage for experiments where novel conditions such as
climate change are being explored (Gustafson, 2013). In PnET-
Succession, age is used to calculate cohort’s biomass at the
onset of the simulation (i.e., model spin-up) and cohorts with
higher biomass are given priority access to light and water
(Gustafson and Miranda, 2019). Cohort biomass is assumed to
be homogeneously distributed in the cell and therefore shade
conditions are also homogeneous within a cell (Scheller et al.,
2007). Potential net photosynthesis rate is calculated as a linear
function of foliar nitrogen (FolN) and biomass growth is a result

1www.landis-ii.org/

of environmental conditions such as temperature, precipitation,
photosynthetically active radiation (PAR), CO2 concentrations
and—optionally—ozone concentrations (De Bruijn et al., 2014).
Biomass allocation depends on compartments turnover and
fraction parameters. Mortality can occur at any time if carbon
reserves become limiting (non-structural carbon <1%) or when
age approaches species longevity (De Bruijn et al., 2014).

PnET-Succession requires a series of generic, ecoregion-
and species-specific parameters. Although many default values
have been made available by the model developers and in
past application studies, most parameters require calibration
according to the biogeographical location of the target landscape
and the tree species included in the simulations (McKenzie et al.,
2019; Mina et al., 2021).

Study Area
The simulated area considered in this study is located in the south
eastern part of Iberian Peninsula and it covers approximately
390,000 ha (37.2◦ N, 3.1◦W, Figure 1). The topography is mostly
mountainous, including three mountain ranges. In the southern
part of the study area, Sierra Nevada spreads from east to west
and contains the highest peak in the Iberian Peninsula, Mulhacén
(3,478 m). In the northern part of the study area, Sierra de Arana
is located in the west, while Sierra de Baza-Filabres is in the east.
More than half of the study area is under protection, either as
National or Natural Park, and therefore a variety of exploitation
and management regimes can be found in the study area.

Several bioclimatic zones are found within the study area
(Rivas Martínez, 1983; REDIAM, 2018). The supramediterranean
zone (mean annual temperature 8–13◦C) is the one covering
most of the area, at low altitudes of Sierra Nevada and connecting
with Sierra de Arana. An important proportion of the Sierra
de Baza surface is also represented by this bioclimatic zone.
Supramediterranean areas are mostly covered by a mosaic
of conifer, mixed forests and sclerophyll shrubs. The highest
areas represent the oromediterranean zone (mean annual
temperature 4–8◦C) and are covered by conifers, shrubs
and sparse vegetation, except for the very high altitudes in
Sierra Nevada, which encompass the cryoromediterranean
zone (i.e., alpine tundra, mean annual temperature <4◦C).
These peaks are covered by scarce vegetation adapted to
extreme climatic conditions. The rest of the study area, at
altitudes commonly below 1,000 m, is mostly covered by
mesomediterranean (mean annual temperature 13–17◦C) and
thermomediterranean zones (mean annual temperature
17–19◦C). The precipitation follows a strong seasonal
pattern, with dry summers and precipitation concentrated
in a small number of events. Rainfall is the most common
form of precipitation. Besides, snowfall at high altitudes
is very important since slow melt down and subsequent
infiltration into soil increases water availability for plants
throughout the spring and summer season. Aspect also
determines water availability due to different precipitation
evapotranspiration patterns.

The study area is covered by diverse natural vegetation patches
in combination with agriculture and Pinus forest plantations.
Pine plantations are the dominant land use type, covering around
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FIGURE 1 | Study area location (A), orthophoto of the study area (B) and pictures of representative forest types: pine plantations (C), mixed open forest (D),
oak-dominated stand (E). Shaded area in panel (B) delimitates pine plantations.

20% of the study area, with a minor presence of natural pine
forests. These plantations were mainly established between the
1950s and 1970s as means to halt soil erosion in recently
abandoned agricultural areas. The main species are Maritime
pine (Pinus pinaster Aiton), Aleppo pine (Pinus halepensis
Miller.), black pine (Pinus nigra Arnold.) and Scotch pine
(Pinus sylvestris L.) (Bonet García et al., 2009; Pemán García
et al., 2017; Mesa Garrido, 2019). Pines were planted in high
densities to drastically reduce soil loss. Afterwards, favourable
climate conditions and lack of appropriate post-planting
management have resulted in highly dense monospecific even-
age stands. As a result, these forest plantations are nowadays
under extreme risk by climate change and forest pests,

which has resulted in decline and massive mortality processes
(Sánchez-Salguero et al., 2010, 2012a).

Almost 40% of the study area is covered with shrublands
and abandoned crops with sparse natural vegetation. Some of
these areas host sparse trees (mainly Quercus ilex L.), which
can be highly relevant seed sources at a local scale. Moreover,
in a context of climate change and further abandonment of
mountain agriculture activities, these sparsely vegetated systems
can be highly important to understand the succession dynamics
in pine plantations for two reasons: (1) Due to climate change,
currently forested areas could suffer a decline and be replaced
by shrublands as these areas become less suitable to sustain high
levels of biomass; and (2) Tree species could expand to shrubland
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areas currently dedicated to marginal activities (mountain
agriculture, livestock, fuelwood, and charcoal exploitation, etc.).

Model Initialization
In this section we describe the workflow followed to produce the
necessary inputs required by LANDIS-II with PnET-Succession.
We first focus on the generation of the initial vegetation
conditions, followed by the methodological process to build
biophysical inputs. The different sources of information used in
this process are listed in Table 1.

Initial Vegetation Conditions
Most FLMs require estimates of initial conditions in the form
of vegetation maps reporting the presence of tree species at the
beginning of the simulations. Concretely, LANDIS-II requires
a spatial representation of species cohorts by age classes (also
called “initial communities”). To generate such vegetation maps,
different information sources are often combined following a
complex workflow that, if not exhaustively described, is often
unreproducible. Even though such workflows can be model-
and site-specific, three methodological steps can be defined:
(1) Plot-level information (e.g., from national or regional
inventories or permanent growth plots) is processed to extract
tree measurements such as basal area, age or height; (2) Polygon-
level information is processed to select stand-scale, spatially
explicit variables which can be linked to plot-level information
such as forest type, mean age, canopy cover, etc.; (3) A spatial
imputation method is applied to produce a continuous map by
assigning plot-level information to polygon-level information. In
the following sections, we describe the methodological details for
each of the three methodological steps of the workflow, which is
summarized in Figure 2.

Plot-level information processing
Plot-level information is necessary to select the most common
tree species and some of their demographic features in the
area of interest. In our case, the Third Spanish National Forest
Inventory (NFI) was used for this purpose (Table 1). The
NFI contains homogeneous information about forest covers in
Spain by reporting data collected in a systematic network of
permanent sampling plots (Alberdi et al., 2017). The plots are
evenly distributed on a 1 km2 grid throughout the territory and
contain plot- and tree-level information for each survey period.
In addition to single-tree data (e.g., species, diameter, height,
form, and health status), the plot is described in terms of the three
most dominant tree species contributing to canopy cover. We
selected the tree species to include in the model simulations based
on the total coverage value of the species within the study area.

Tree age is often not available at single-tree level and its
estimation is challenging as several factors influence growth rate
of individual trees, leading to very different tree characteristics
for the same age. Nevertheless, LANDIS-II uses cohort age-
classes as a proxy for biomass, and therefore an estimated age
is required for each species across the landscape. NFI provides
estimated stand age for plots within even-aged stands. In our
area, even-aged stands are composed by Pinus spp. Since these
plots also have associated individual tree measurements (e.g.,
diameter, height), we calculated the average diameter per species
and plot and joined it to the assigned stand age. In order to have
as many observations as possible, we expanded the considered
dataset to all plots within even-age stands from surrounding
regions (provinces of Granada and Almeria). Since no estimated
age was available for plots within uneven-age stands (mainly
Quercus spp. and Populus nigra), a semi-quantitative method
was applied. We used yield tables available from the literature

TABLE 1 | Information sources used in this study.

Information
required

Source References Spatial scale

Plot-level
vegetation
information

Third Spanish National
Forest Inventory (NFI)

Third Spanish National Forest Inventory (2007). Available as a Microsoft Access
database at: https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-
naturaleza/informacion-disponible/cartografia_informacion_disp.aspx Source: Ministerio
para la Transición Ecológica y el Reto Demográfico

1:50.000

Polygon-level
vegetation
information

Spanish Forestry Map
(FM)

Map resulting from photointerpretation. Accessible as vectorial file at: https://www.
mapa.gob.es/es/cartografia-y-sig/ide/descargas/desarrollo-rural/mfe_andalucia.aspx
Source: Ministerio de Agricultura, Pesca y Alimentación

1:50.000

Andalusian Vegetation
Map (VM)

Map resulting from photointerpretation and field sampling. Accessible as vectorial file at:
https://descargasrediam.cica.es/repo/s/RUR Source: REDIAM, Consejería de
Agricultura, Ganadería, Pesca y Desarrollo Sostenible

1:10.000

Climate data Reference data Annual precipitation, mean, minimum and maximum annual temperature for the period
1971–2000. Accessible as raster files at: https://descargasrediam.cica.es/repo/s/RUR
Source: REDIAM, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible

100 m
resolution

Climate series Maximum and minimum temperatures and precipitation for the period 1950–2005.
Network common data files published by Karger et al. (2020)

0.049◦

resolution

CO2 concentrations times series for SSL station and period 1971–2018 published by
Meinhardt and ICOS Atmosphere Thematic Centre (2020).

Point sampling:
47.9◦N, 7.9◦E

Photosynthetically Active Radiation for the period 1950–2019. Network common data
files published by Cornes et al. (2018) (Version 20.0).

0.25◦ resolution

Soil data Regional soil maps Sand, clay and silt soil content and soil depth. Raster files published by Rodríguez
(2008).

250 m
resolution
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FIGURE 2 | Schematic view describing the workflow of the initial vegetation map generation. Tree species presence and age were extracted from plots of the Third
Spanish National Forest Inventory (NFI) during the plot-level information processing phase. During the polygon-level information processing, the Spanish Forestry
Map (FM) was used to classify polygons as active/inactive and no forest/forest. The Andalusian Vegetation Map (VM) was used to extract the presence of shrub
communities and sparse trees. At the spatial imputation phase, plot- and polygon-level information was combined to generate a continuous map of vegetation.
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(Teobaldelli et al., 2010). Then, we generated an age assignment
table containing correspondence rules between tree age, diameter
and height for each species under consideration. This table was
validated based on expertise and observations in the study area.
Finally, the age assignment table was used to attribute an age
class to the species in each NFI plot (see Supplementary Table 1
for more details).

Polygon-level information processing
Many government and private forestry organizations utilize
cartographic products to support forest management. Polygon-
level information usually contains forest variables at a landscape
scale such as forest type, coverage or stand development
stage. Here, we used the Spanish Forestry Map (FM) and the
Andalusian Vegetation Map (VM) as the main source of spatially
explicit landscape information (Table 1). The FM is a vectorial
file generated by photointerpretation. It contains a series of
attributes describing the forest vegetation for each polygon:
polygon identifiers and surface; province and region; forest and
land use characteristics (vegetation type, structural type, land use
categories); name, coverage and state of the three most dominant
species in dominance order; and tree and total coverage fraction.
Based on these attributes, polygons were classified as active (those
containing or potentially containing vegetation units useful for
our purpose) or inactive (those where natural succession is
hampered by human activities: crops, infrastructures, firebreaks,
etc.). Active polygons were in turn classified as forest and non-
forest. Forest polygons have an average size of 51 ha and a
maximum of 357 ha.

The VM is also a vectorial file that contains an extensive list of
attributes (140) describing the presence and characteristics of the
tree species, shrubs and pastures present in each polygon (e.g.,
vegetation community, canopy coverage) at a higher resolution
than the FM. Due to the importance of sparse trees and
shrublands in our study area (see section “Study Area”), we
used the VM to consider the occurrence of sparse trees in
non-forest polygons in the initial vegetation map. Moreover,
since the VM also provides information about shrubs, grasslands
and pastures, we used a variable termed “life form” attribute
to analyse the presence of shrubs within the study area. The
life form attribute is based on the classification proposed by
Raunkiaer (1934) and subsequently revised by Ellenberg and
Mueller-Dombois (1967). According to this classification, plants
can be: microphanerophytes (“evergreen perennial plants that
grow between 2 and 5 m, or whose shoots do not die back
periodically to that height limit”), nanophanerophytes (“evergreen
perennial plants that grow below 2 m tall, or whose shoots do
not die back periodically to that height limit”), chamaephytes
(“evergreen perennial plants whose mature branch or shoot system
remains perennially within 25–50 cm above ground surface, or
plants that grow taller than 25–50 cm, but whose shoots die back
periodically to that height limit”), hemicryptophytes (“perennial
plants with periodic shoot reduction to a remnant shoot system that
lies relatively flat on the ground surface”), geophytes (“perennial
plants with periodic reduction of the complete shoot system
to storage organs that are imbedded in the soil”), therophytes
(“annual plants whose shoot and root system dies after seed
production and which complete their whole life cycle within

1 year”). Shrub communities’ size was extracted from this
classification. Hemicryptophytes, geophytes and therophytes life
forms were not considered for the analysis as they mostly refer to
species with short life cycles. As a result, the presence of tall (2–
5 m), medium (0.5–2 m), short (<0.5 m) shrub communities was
extracted for each polygon in the study area. Each of these shrub
communities was parameterized individually in PnET-Succession
(see details below).

Spatial imputation
Spatial imputation is applied to combine plot-level to polygon-
level information. To generate the initial vegetation map suitable
for LANDIS-II, we combined plot- and tree-level information
(NFI) with polygon-level information (FM and VM). The final
aim of this step is to produce a forest composition map containing
the species-age assemblage (species and age of each cohort) in
every cell within the study area (see Duveneck et al., 2015 for the
description of a similar approach in North America).

First, we performed a spatial join between the forest polygons
from the FM and the plots from the NFI (Figure 2). FM polygons
containing one single NFI plot were assigned the species-age
assemblage of the surveyed plot. FM polygons with more than
one NFI plot were assigned the species-age assemblage which
results from merging all plots species-age assemblages. This only
occurred in a small proportion of cases: 80 out of 789 forest
polygons had two NFI plots in them, 3 polygons had 3 NFI plots
in them and one polygon had 4 plots in it.

Forestry Map polygons without NFI plots were analysed
to identify an equivalent polygon among those which have
one or more intersecting NFI plots. Polygon equivalency was
analysed at three levels: (i) Full equivalency: polygons matching
vegetation type, species dominance, species development state,
and total coverage fraction; (ii) Partial equivalency: polygons
matching vegetation type, species dominance, and total coverage
fraction; and (iii) Species equivalency: polygons matching
species dominance and total coverage fraction. FM polygons
were assigned the species-age assemblage of their equivalent
polygon. If there were more than one equivalent polygon,
the polygon was assigned the species-age assemblage resulting
from the merge of all possible ones. FM polygons with no
equivalent polygons were further analysed based on their
species composition, without considering species dominance
order. These polygons were assigned the species-age assemblage
corresponding to the most common species-age assemblage
containing the same species as the considered polygon in the
whole study area. FM polygons containing species assemblages
not occurring in the previously analysed polygons were assigned
one cohort of each of the species present in it. The age of
this cohort corresponded to the most common age for each
species among all previously analysed polygons. This procedure
resulted in the description of the forest trees within the
study area.

Second, polygons labelled as non-forest by FM, were imputed
to include sparse trees (Figure 2). We used VM to gather
information for those polygons. Since VM does not report any
variable describing the age of the species, VM polygons were
imputed a species-age assemblage containing the reported species
with the most common age for that species in the rest of the study
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area. By doing so, the description of the sparse trees within the
study area was completed.

Third, we imputed shrub communities within the landscape
by assigning the corresponding shrub community-age
assemblage to each VM polygon (Figure 2). Shrubs were
not allocated to different age classes but instead we arbitrarily
assigned age 10 for all polygons. Since in LANDIS-II shrub
biomass should not exceed tree biomass (see section “Model
Description”), the role of shrubs in the model is mainly to
compete for light and water in the understory (e.g., affecting
establishment), thus we believe age class assignation for shrubs
was not necessary.

Finally, we obtained the initial vegetation map by combining
forest trees, sparse trees and shrubs communities. The map
was rasterized at 100 m resolution (1 ha cells). Each cell was
labelled with a code associated to a list of unique species-
cohort assemblages.

Biophysical Inputs
The FLM LANDIS-II requires an input map of ecoregions
as biophysical inputs. LANDIS-II ecoregions are continuous
or discontinuous areas of the landscape which share climate
conditions and soil texture (see section “Model Description”).
To generate the map of ecoregions, we used a reference climate
dataset and a regional soil map (Table 1). The reference climate
dataset reports annual precipitation and mean, minimum and
maximum temperature for the period 1971–2000 at a 100 m
resolution. Firstly, an unsupervised k-means clustering was
applied to the climate dataset to lump together cells with
similar climate. MacQueen algorithm was used in this clustering
(MacQueen, 1967). We evaluated different numbers of clusters
and eventually ended up with four climate regions. The resulting
ecoregions agree with our expectations considering topography
and the bioclimatic zones found in the study area (Figure 3).

The resulting climate regions map was intersected with the
soil texture map. The soil map reports the percentage of sand,
silt and clay at a 250 m resolution. This map was derived by
simply translating the percentages of sand, silt and clay to USDA
soil texture categories. The final ecoregions map was therefore
produced by overlapping the climate regions and the soil textures
maps. This resulted in a total of 28 unique ecoregions defined by
both a climate region and a soil type (Figure 3).

PnET-Succession also requires rooting depth for each
ecoregion. Ecoregion rooting depth was calculated based on
soil depth classes reported in the soil map (0–250 mm, 250–
500 mm, 500–1,000 mm, 1,000–1,500 mm, >1,500 mm). The
midpoint of each class was used to calculate the most frequent
rooting depth for each ecoregion. Precipitation Loss Fraction and
Leakage Fraction were given values of 0.6 and 1 for all ecoregions.
All other PnET-Succession ecoregions parameters were given
default values. A complete dataset containing model inputs is
provided (see section “Data availability”).

Calibration of Model Parameters
LANDIS-II and PnET-Succession require a set of parameter
values for each species simulated in the landscape. Generic
species parameters are required irrespective of the chosen

succession extension (e.g., longevity, sexual maturity),
while others are required by PnET-Succession (e.g., foliage
nitrogen, foliage turnover, minimal, and optimal photosynthetic
temperature). We firstly defined an initial set of parameter values
from multiple sources. Then, we ran single-cell simulations to
verify the species behaviour (e.g., growth, photosynthetic rates)
under different conditions. On a single, empty 100 m cell, a
single 10-years old cohort of each species was initialized and
grown for 200 years preventing establishment of new cohorts.
Five replicates were run for each simulation using static monthly
averages of temperature, precipitation, PAR and CO2 (Table 1
and Supplementary Figures 4–6). Baseline climate conditions
were used to avoid introducing variability due to fluctuating
climate (Gustafson and Miranda, 2019).

The results of these simulations were compared with species
biomass estimations for the study area and literature information.
Biomass estimations were calculated for P. halepensis, P. nigra,
P. pinaster, P. sylvestris, Q. ilex, and Q. pyrenaica based on forest
inventory data and allometric equations published in Montero
et al. (2005). Simulated versus observed Relative Growth Rates
in relation to species biomass were used for comparison as this
metric is independent from age, which has a high uncertainty
degree in NFI data.

Following calibration guidelines for PnET-Succession (De
Bruijn et al., 2014; Gustafson and Miranda, 2019) and evidences
from a sensitivity analysis with the same model (McKenzie et al.,
2019), we adjusted the most influential species-specific parameter
values in an iterative process until the species showed the
expected behaviour based on authors’ expertise and observations.

We also evaluated the response of competing assemblages
of species typical of the different forest types included in our
landscape. These multi-species simulations allow the calibration
in relative terms, as well-known competition effects can be
assessed and species parameters can be adjusted accordingly.
In these simulations, species are established in the cell at the
same time and no new establishment is allowed, which is
often not the case in natural ecosystems. Thus, the observed
species development is the result of their growth traits and their
different performance under competition and not due to different
establishment strategies or other advantages.

Landscape Simulation
We simulated forest dynamics at the landscape scale
incorporating the effect of spatial processes such as dispersal and
climate and soil heterogeneity. We initialized the model
with the biophysical inputs described above and with
the parameters calibrated in the previous step. To verify
the influence of shrub communities on simulated forest
dynamics, we initialized LANDIS-II with two different
vegetation datasets: (1) With shrub communities and (2)
Without shrub communities. Since the aim of this study
was to initialize the landscape for further experiments with
LANDIS-II and PnET-Succession, neither natural nor human-
driven disturbances (i.e., fire, harvest) were included in the
experiment. We ran five model replicates using baseline climate
for 200 years (Table 1 and Supplementary Figures 4–6).
We analysed model outputs in terms of temporal patterns of
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FIGURE 3 | Schematic view of workflow followed to produce the ecoregions map. Reference climate data consist of annual precipitation, mean, minimum and
maximum annual temperature for the period 1971–2000 at 100 m resolution. Clustering of climate data resulted in four climate regions. Soil data consist of a
percentage of silt, sand and clay at 250 m resolution. The intersection of climate regions and soil textures resulted in 27 ecoregions.

average biomass for each species. Moreover, we mapped and
compared total aboveground biomass for selected simulation
years across the landscape. All analyses were performed
in R version 3.5.3 (R Core Team, 2020) and QGIS 3.10
(QGIS Development Team, 2020).

RESULTS

Spatial Imputation and Initial Vegetation
Map
The analysis of 981 NFI plots falling within the study area
resulted in eight species having a coverage value higher than

1%: Quercus ilex (25%), Pinus sylvestris (18%), Pinus pinaster
(16%), Pinus nigra (16%), Pinus halepensis (16%), Quercus
pyrenaica (2%), Populus nigra (1%), and Juniperus oxycedrus
(1%). These species were selected to be included in the study.
Besides, two extra species—Quercus faginea and Juniperus
communis—were also included due to their importance in
specific environments. J. communis covers vast areas above the
tree line (cushion shape shrubs) (García, 2001) and Q. faginea is
also locally abundant.

The analysis of the FM resulted in a classification of active
versus inactive cells within the study area. Inactive areas
cover 19% of the study area and mainly refer to crops and
firebreaks (17.3%). Moreover, active cells were classified as forest
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and non-forest, which represent 41 and 40% of the study
area, respectively.

The intersection of NFI plots and FM polygons defined the
species-age assemblage of a total of 789 polygons within the study
area. Out of 3,113 polygons with no NFI plot in them, 84%
of them were imputed based on equivalent polygons (55% full
equivalent, 22% partial equivalent and 7% species equivalent).
The remaining 16% of polygons were imputed the species
assemblage reported in the FM and the most common age for
each of the species.

The use of the VM allowed a more detailed description
of active non-forest areas. The analysis of sparse trees in
non-forest polygons increased by 4% the surface of the
study area where tree species are present. Even though it
may seem as a small portion of the landscape, these sparse
trees can represent important seed sources when long-term
forest dynamics are simulated. Moreover, the VM analysis
allowed the inclusion of shrub communities in the landscape’s
cells, which can affect the shade conditions as well as
water availability.

Figure 4 shows the initial vegetation map as a result of
combining the presence of forest trees, sparse trees and shrubs
communities. Several portions of the landscape are covered by
shrublands and Juniperus spp., surrounded by a mosaic of Pinus
spp., Quercus spp. and mixed Pinus-Quercus forests, with a minor
presence of Populus nigra.

Calibration of Model Parameters by
Means of Site-Level Simulations
Estimating species parameter values was a complex task
due to the amount of information sources required to
cover all of them. Table 2 reports the most important

parameters required by LANDIS-II and PnET-Succession.
A detailed explanation of all parameter values, sources
and rationales for their adoption is provided in
Supplementary Table 2.

Biomass estimations for P. halepensis, P. nigra, P. pinaster,
P. sylvestris, Q. ilex, and Q. pyrenaica were compared with
results from single-cell simulations initialized with individual
species. Results of biomass and photosynthetic rates of species
simulated individually on a single cell are reported in the
Supplementary Figures 1–3. Simulated results are within
the range of estimations, although estimations are highly
variable among plots.

Among the more than 70 of single-cell simulations that
were performed, we chose to show here two representing
typical species assemblages of low and high altitude forest types
(Figure 5). In the low altitude forest type, composed of two
pine and two oak species, our results indicated a dominance of
Q. ilex over Q. faginea, P. halepensis, and P. pinaster (Figure 5A).
Cohorts of the two latter species were simulated to die by year
140 and 190, respectively, since they approached their longevity
(pink and blue lines). Q. ilex clearly dominated Q. faginea
but it did not fully outcompete it. The advantage of Q. ilex
in this forest community seems to be related to its capacity
to start photosynthesizing earlier in spring than the other
species (Figure 5B).

In the high altitude forest type, P. sylvestris, P. nigra,
and Q. pyrenaica coexisted along the simulation, although
P. sylvestris built higher biomass compared to the other two
species (Figure 5C). The advantage of P. sylvestris was related
to its higher photosynthetic rate from the beginning of the
season, while Q. pyrenaica, being a deciduous species, increased
its photosynthesis more gradually after having built foliage
biomass (Figure 5D). Generally, we found that PnET-Succession

FIGURE 4 | Map of initial vegetation conditions including shrub communities. Each category represents a community dominated by one or more tree species, where
shrubs and Juniperus spp. may also be present.
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TABLE 2 | Species parameter values for LANDIS-II and PnET-Succession.

Species Long.1

(years)
FolN2

(%)
SLW max
(g m−2)

TOfol2 (prop.
year−1)

HalfSat3

(µmol s−1)
H33

(m)
H43

(m)
PsnT Min1

(◦C)
PsnT Opt1

(◦C)

J. communis 600 0.85 200 0.50 264.5 115 155 3 21

J. oxycedrus 600 0.85 200 0.66 264.5 115 155 3 21

P. halepensis 150 1.19 240 0.34 282.5 118 160 3 26

P. nigra 400 1.02 240 0.26 245.0 115 155 2 23

P. pinaster 200 1.00 240 0.24 245.0 115 155 3 25

P. sylvestris 300 1.33 240 0.36 266.5 110 150 1 20

Pop. nigra 90 2.50 85 1.00 227.0 105 145 2 31

Q. faginea 300 1.92 110 1.00 224.5 115 155 3 26

Q. ilex 600 1.42 150 0.52 199.0 118 160 2 28

Q. pyrenaica 300 1.85 80 1.00 224.5 110 150 1 22

short shrubs 50 0.70 100 0.75 170.0 118 160 2 27

medium shrubs 50 0.75 100 0.75 175.0 118 160 2 27

tall shrubs 50 0.80 100 0.75 180.0 118 160 2 27

1 Serrada et al. (2008); Valladares Conde (2005), Montoya Oliver and Mesón García (2004). 2 Kattge et al. (2020) 3 Niinemets and Valladares (2006); Pausas et al. (2004).
FolN: Nitrogen foliar content; SLWmax: Maximum specific leaf weight at the top of canopy; Tofol: foliage turnover; HalfSat: Photosynthesis half saturation light level; H3,
H4: Water stress parameters according to Feddes et al. (1978); PsnTMin, PsnTOpt: photosynthesis minimum and optimum average daytime temperature (Gustafson and
Miranda, 2019).

reproduced reasonably well the bimodal growth patterns of
Mediterranean tree species, mostly occurring during spring
and fall instead of summer which is characterized by a lack
of precipitations.

Landscape-Level Simulation
Both simulations with and without shrubs showed a trend to
increase the average biomass of all tree species during the first
years of the simulation and stabilization afterwards (Figure 6).
In the simulation including shrubs, this increase was slower than
in the simulation without shrubs, with a faster increase in the
first 50 years. In both simulations the total average biomass at
stabilization was around 100 tn ha−1.

We found differences among species in terms of simulated
biomass growth. Among pine species, P. sylvestris and P. nigra
were those with a higher increase of average biomass in both
simulations. Biomass of P. halepensis and P. pinaster increased
during the first 50 years, followed by a decline and disappearance
from the landscape toward the last decades of the simulation.
Among oaks, biomass of Q. ilex increased notably, while
Q. pyrenaica increased at lower rates and stabilized after about
100 years. Biomass of Q. faginea and Pop. nigra had similar trends,
increasing slightly in the early years and declining afterwards,
but still maintaining presence at low levels of biomass. Junipers
slightly increased their biomass during the first 30 years and
then strongly declined. These species show similar patterns in
both simulations, but under the simulation without shrubs we
observe a steeper increase of biomass during the first years. Shrub
communities increased their average biomass during the first
40 years and declined afterwards.

Initial total landscape biomass (time 0) was similar in both
simulations since shrub communities accounted for low levels of
biomass (5.1% of total biomass). At time 50, the area with high
biomass is wider in the simulation without shrubs (Figure 7).
This pattern was observed at time 100 too, although the difference
between the two simulations was smaller (see total biomass

at each time step in Figure 7). At time 150 and 200, both
simulations showed a similar quantity and distribution of the
biomass across the landscape, with slightly higher values of
biomass in the simulation without shrubs than in the one
with shrubs. The biomass distribution within the study area
followed the altitudinal gradient, with higher biomass found at
medium elevations, specially at time step 150. At the beginning
of the simulation, areas at high elevation (above c.a 2,000 m
a.s.l.) show the smallest values of biomass relatively to the rest
of the study area. This pattern remained by the end of the
simulation in both cases.

DISCUSSION

We provide detailed step-by-step example to initialize, calibrate
and set up a forest landscape model. Our work could help
other potential users to better understand what is required
to start applying such models. Thus, our fully documented
methodological process represents a step forward toward
the transparent application of forest landscape models in
regions without prior application. We also made available a
high-resolution map of vegetation conditions and calibration
details for a large mountainous landscape in the European
Mediterranean area, together with the input data and scripts
used in the process. Our landscape level simulations reveal
distinct dynamics among species according to their competitive
potential and simulated intra-annual growth. These results also
indicate that shrub communities shall be considered in forest
landscape models as they have the potential to influence forest
dynamics by delaying growth and expansion of tree species in
Mediterranean ecosystems.

Spatial Imputation and Initial Vegetation
Conditions
The selection of species to be included in modelling studies
is typically done by analysing data from terrestrial plot
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FIGURE 5 | Mean simulated annual total biomass (wood, roots and foliage) (A,C) and monthly net photosynthesis (B,D) for the two chosen forest types. Shaded
area refers to standard deviation. Values of net photosynthesis are averages between years 50–75, with error bars indicating standard deviation. Note that lines
connecting the points serve for illustrative purposes only, since PnET-Succession simulates photosynthesis at monthly time scale (not daily).

FIGURE 6 | Average biomass of species through time for the whole landscape. Note that Junipers (J. communis and J. oxycedrus) and shrub communities (short,
medium, and tall) have been grouped together.

measurements such as forest inventories (e.g., Wang et al.,
2019). However, for certain ecosystems, limiting this inspection
to forest inventories has some disadvantages. Forest inventory
data commonly report information on tree species, neglecting
important functional groups (in our case, J. communis and shrubs
communities). Moreover, selection is usually based on variables
such as basal area or stand coverage. This selection may result
in the exclusion of species that may not be abundant at the
landscape level but whose presence is crucial at the local scale.
For example, Q. faginea would have been initially excluded from
our study since its coverage falls below the 1% of the study

area (0.03%). However, this species is found at high abundance
in some locations and has a higher susceptibility to summer
drought than Q. ilex. Therefore, the dynamics and distribution
of Q. faginea are expected to be highly affected by climate
change (Quero et al., 2006). Similarly, J. communis was included
due to its importance in areas above the treeline. In these
areas, J. communis is susceptible to interact with tree species
under climate change conditions by limiting or facilitating uphill
migration of tree species. Therefore, even though forest inventory
data are important resources for generating inputs for FLMs,
we recommend combining such datasets with other information
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FIGURE 7 | Total aboveground biomass (tn ha-1) at years 0, 50, 100, 150, and 200 for the two simulations, as indicated in the scale bar on the right. Number in
each panel indicates the total aboveground biomass (Tg) for the whole landscape at each time step.
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sources (e.g., vegetation maps, local studies) according to the
forest ecosystem under consideration and study focus—in our
case, climate change applications—. Considering factors such as
relevance in specific habitats or cultural importance (e.g., Lucash
et al., 2019) may result in inclusion or exclusion of some species.

Our method, which combined multiple information sources
allows the inclusion of fine-coarse information such as the
presence of sparse trees and shrub communities. The inclusion
of sparse trees in the initial vegetation map is important in
the Mediterranean mountains, since we simulate succession in
pine plantations, artificially created stands where regeneration is
highly affected by seed dispersal from adjacent patches of native
vegetation (González-Moreno et al., 2011; Navarro-González
et al., 2013). Although shrubs’ biomass is generally low, they
can shade the forest floor and therefore influence simulated light
and soil water dynamics, as well as affect establishment (further
discussion below). Moreover, shrubs play a key role in other
processes such as fire dynamics due to their role as fuel in forest
fires (Syphard et al., 2006).

In this study, we have used a categorical methodology for
the spatial imputation, contrary to commonly used methods
based on geographic or data space distance (e.g., Wilson et al.,
2012; Ohmann et al., 2014; Duveneck et al., 2015). Our study
area is a highly anthropized mosaic of different land uses and
management regimes, and therefore imputation based solely
on distance might not have been an appropriate criterion,
as indicated by Duveneck et al. (2015). For example, the
most common forest type in our landscape, pine plantations,
are the result of past forestry policies which were applied
almost simultaneously all over the region. Therefore, a high
similarity is expected between stands, regardless of the physical
distance between them. This is a common situation in other
Mediterranean ecosystems (European Environmental Agency
[EEA], 2016), and therefore this approach could also be
used in such cases.

The uncertainties of this methodology are inherently related
to the uncertainties of the information sources. Besides, an
additional source of uncertainty in the initial vegetation
conditions map is related to the assignation of age to cohorts.
Tree age data is rarely available at single-tree level in forest
datasets, as reliable tree age estimations are resource-consuming
and often invasive (Fazan et al., 2012; Rohner et al., 2013).
Thus, modellers are commonly forced to assign each tree (or
cohort) to an age class inferring it from available measurements
(e.g., diameter, height, average stand age; Abrams, 1985; Rozas,
2003). In the case of LANDIS-II, a cohort’s age determines
simulated biomass, which in turn influences light and water
availability at cell-level. Therefore, assumptions in the age
assignation process may not be so relevant as long as the relative
difference between species reflects real conditions. Considering
this, we created correspondence rules between tree age and
diameter and height for each of the simulated species and
age classes. Thus, the growth pattern assigned to each of the
species is relative to the other species, reflecting the differential
access to water and light by each species-age. This methodology
could be further improved by considering additional local yield
tables and observations. Nevertheless, by documenting such

correspondence rules the model inputs generation is significantly
more transparent and reproducible than other LANDIS-II studies
(e.g., Mina et al., 2021).

Our goal was to increase the reproducibility of model input
generation by ensuring high transparency and detail in the
process description. The methodology presented in this study
does not necessarily introduce new methods compared to
previous studies (e.g., He et al., 1998) but rather it highlights
all aspects of the process, which we believe could be of great
benefit for beginner modellers to set up applications in new
landscapes. Firstly, considering multiple information sources at
plot- and polygon-level may be necessary. In our case, multiple
vegetation maps were required to consider forested areas,
dispersed trees and shrub communities. Secondly, the collected
information likely requires processing and transformation, which
may introduce assumptions (e.g., age assignation). Thirdly, the
selection of the appropriate spatial imputation method should
consider the study area characteristics (e.g., coetaneous patches
of pine plantations) and available information.

Calibration of Model Parameters and
Site-Level Simulations
Calibration of model parameters was performed by running
simulations and testing long-term species dynamics
and competitive interactions at site-level. The obtained
results were iteratively assessed to adjust parameter
values until the species showed their expected growing
patterns. Experiments at site scale using landscape models
have also been used before to analyse the influence of
different factors on model outputs by avoiding the high
complexity resulting from large landscapes simulations
(Gustafson et al., 2017, 2018).

During the calibration phase, species parameters were
adjusted to ensure that the model simulates realistic species
biomass estimations. Species biomass data derived from field
observations (e.g., growth-and-yield sites, inventories and
permanent plots) are usually highly variable as they differ
depending on multiple factors (e.g., location, stand development,
site index). Moreover, biomass values often have a high degree
of uncertainty, since they are commonly estimated based on
general allometric equations from other measured variables (e.g.,
diameter, height, wood density) (Forrester et al., 2017). Therefore,
such comparisons should be interpreted with caution. In this
study we used such estimations to ensure that the simulated
biomass falls within realistic ranges rather than adjusting
parameter values to match the exact values (see Supplementary
Figure 3). With this approach, we calibrated the most relevant
species for this study (P. halepensis, P. nigra, P. pinaster,
P. sylvestris, Q. ilex, and Q. pyrenaica).

Besides, we review here other studies which provide
biomass estimations for some of our species. The dynamics
of Q. pyrenaica stands have been studied by Santa Regina
(2000), who estimated its biomass in four plots in north-
western Spain. Our simulations have a high degree of agreement
for foliage biomass, while certain overestimation remains for
wood biomass. This difference, nevertheless, can be justified
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as in the plots studied by Santa Regina (2000) the presence
of shrubs could be reducing Q. pyrenaica productivity. Río
and Sterba (2009) studied the productivity of mixed stands
of P. sylvestris and Q. pyrenaica. They found that although
P. sylvestris is less productive when growing in mixed stands,
the reduction in productivity is smaller than the reduction in
occupied area. Accordingly, our simulations show a decrease
in productivity of P. sylvestris when growing together with
other species such as Q. pyrenaica, but it remains as a highly
productive species.

Other methodologies have been applied for model calibration
(e.g., Duveneck et al., 2017; Cassell et al., 2019; Mina et al.,
2021). As an example, Duveneck et al. (2017) used data from
flux towers within New England (United States) to calibrate
PnET parameters. The application of some methodologies over
others usually responds to the availability of data for the
simulated area. In this sense, the lack of available biomass
accumulation curves limited the application of more exhaustive
calibration methodologies. Our calibration could therefore be
improved if additional data sets become available, such as high-
resolution biomass measurements or growth rates based on flux
towers measurements.

Our results clearly show that PnET-Succession reproduces
the characteristic bimodal growth observed in Mediterranean
species (Larcher, 2000). This growth pattern is the result of
dry summer conditions, which impose a limitation for growth
to numerous species. Thus, Mediterranean species often show
two peaks of productivity through the year, in late spring and
fall (Camarero et al., 2010; Gutiérrez et al., 2011). Q. ilex
bimodal growth has been studied in detail by Gutiérrez et al.
(2011). They report asymmetrical radial increment peaks in May
and September for a coastal location in north-eastern Spain,
with high plasticity dependent on climatic conditions and most
of the growth occurring during the first growing phase. The
simulated growth of Q. ilex reproduces this pattern both when
the species is simulated growing alone or in association with
other species. Modelling such growth interannual variability
remains a challenge for forest models, for which improvements
are proposed to include such processes (Mina et al., 2016).
In the case of PnET-Succession, the high temporal resolution
(monthly scale) and mechanistic approach allows reproducing
such patterns and therefore makes this model highly suitable for
applications in Mediterranean systems.

Distinct dynamics were observed according to the species
competitive potential and simulated intra-annual growth.
Species leaf habits is one of the factors influencing species
competitiveness. Among the simulated species considered in this
study, only Q. faginea, Q. pyrenaica, and Pop. nigra are deciduous
while all other species are evergreen. Deciduous species have
a higher potential for net photosynthesis in PnET-Succession
(De Bruijn et al., 2014) but they are generally less shade and
drought tolerant and need to spend more energy in building
foliage biomass than evergreen species. The trade-off between
benefits and losses caused by different leaf habits explains the
coexistence of species with different strategies (Escudero et al.,
2017), as it is clearly observed in the growth patterns of Q. ilex
and Q. faginea.

The calibration of non-tree species—junipers and shrubs—
was particularly challenging. Although we believe including
both junipers (J. communis and J. oxycedrus) in the initial
vegetation map was important in our target ecosystem, the
lack of information and reliable data on these species limited
a finer calibration. As a result, both species were assigned
with very similar parameter values, their simulated behaviour
was almost identical and thus they were grouped together. In
the case of shrub communities, since they represent functional
groups rather than single species, calibration was achieved
mostly by extrapolation, comparison with similar studies (e.g.,
Cassell et al., 2019) and tuning according to expected simulated
behaviour relatively to tree species. Their ecological role,
for the sake of this study, was mainly as shade providers
and competitors for establishment, and therefore our main
objective in this sense has been oriented to ensure survival
and growth beneath the tree canopy. For further applications
where the role of non-tree species is more relevant (e.g.,
fire dynamics, facilitation), their parameterization shall be
improved to better reflect differences between shrubs species or
functional types.

Landscape-Level Simulation
Our results show that the shrub communities influence the forest
dynamics by delaying the growth and expansion of tree species.
In our simulations, we found that shrubs reduce tree species
establishment. However, shrubs are known to serve as nurse
plants, favouring tree seedling growth by amelioration of adverse
dry conditions and protection against herbivory (Castro et al.,
2004; Gómez-Aparicio et al., 2005; Prévosto et al., 2020).

Modelling the role of understory in forest succession has also
been investigated by Thrippleton et al. (2016) with the LandClim
model. Similarly to our results, they found delayed establishment
of trees when herbaceous understory was abundant. Moreover,
both Thrippleton et al. (2016) and our results show that shrubs
are unable to establish under dense canopies, eventually declining
and even disappearing from the landscape. This agrees with
field observations: weak regeneration of shrubs and tree species
under dense canopies biomass even when the sapling bank is
present (Mendoza Sagrera, 2008). Also, the decline of shrubs
in our simulations was likely not realistic, since small-scale
perturbations creating patches where light availability increases
and shrub communities thrive (e.g., due to fire, Leverkus et al.,
2014) were not included in our experiment. However, the
interactions occurring between trees and non-trees species and
abiotic factors such as fire justify the need to include these
communities in these kinds of applications (e.g., Loudermilk
et al., 2013).

The increase of forest biomass observed in our simulations at
landscape level was somewhat expected, since we did not include
harvesting or natural perturbations (e.g., fire, pest outbreaks).
Additionally, simulations were run with the same climate inputs
used for calibration (baseline climate), thus potential impacts of
changing climate (e.g., higher temperatures, extended drought,
CO2 fertilization) were not considered. At medium altitudes,
where most forest stands are found, the growing tendency in
biomass was likely a result of pine plantations being relatively
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young at the beginning of our simulations. Pine plantations in
Sierra Nevada and Sierra de Baza have been showing in latest
years signs of decay as a result of increasing drought stress and
intense interspecific competition (e.g., Sánchez-Salguero et al.,
2010, 2012a,b). These mortality events could not be observed
in our study since increasing drought was not considered in
our climate inputs.

Even though there was a general growing trend in biomass,
the dynamics among species differed. P. halepensis and
P. pinaster biomass declined as they approached longevity
and seemed unable to regenerate beneath the canopy, while
Q. ilex kept growing. P. sylvestris and P. nigra, however,
were able to coexist with Q. pyrenaica, and therefore they
remained present in the landscape and even increased their
biomass through time. Factors influencing the establishment
of pines and oaks in Sierra Nevada and Sierra de Baza
have been profusely studied (e.g., Mendoza et al., 2009a,b;
Gómez-Aparicio et al., 2009; Herrero Méndez, 2012), showing
limitations to recruitment mainly due to high post-dispersal seed
predation rates and dry summer conditions. Our simulations
also reflect poor establishment of some species, probably
related to dry summer conditions and species shade tolerances
being higher than in reality. In the case of junipers, they
are probably limited by a short growing season due to
their minimum and optimal photosynthesis temperatures and
low biomass levels which prevents them from accessing
light and water.

Modelling Aspects, Limitations and
Future Research
The selection of the model used in this study was based on
the flexibility and potentiality of this model. LANDIS-II is
a well-documented model supported by an active scientific
community, which ensures help and support for new modellers.
Moreover, several model extensions are available for a wide
variety of future applications (e.g., harvest, fire, wind, biological
agents). To simulate forest dynamics, we specifically chose
PnET-Succession as it simulates ecological succession with a
more mechanistic approach than past extensions. As mentioned
above, by simulating growth at monthly resolution, intra-
annual growth variability can be properly captured, which is of
crucial importance for simulations under climate change and
applications in the Mediterranean area.

However, the model is still limited in some aspects which
could be further improved. First, the need to provide cohort
age certainly adds uncertainty to the initial conditions. Given
that PnET-Succession uses age to determine initial cohorts’
biomass, other variables such as diameter, basal area or height—
often available from field observations—could be used instead,
reducing uncertainty. Even though latest PnET-Succession
version allows providing initial biomass, this variable often needs
to be estimated with allometric equations. Besides, since cohort’s
biomass is highly dependent on tree density, tree density could
also be incorporated into the model in some way to improve
model representation of competition effects (but see Wang et al.,
2014). This would be especially relevant in ecosystems such

as pine plantations, where extremely high tree densities cause
inter- and intraspecific competition to be an important factor
explaining vegetation dynamics.

The grouping of cells into homogeneous climatic conditions
(ecoregions) prevents a fine-coarse capturing of topographic
influence on climate, which is a relevant issue in mountainous
areas. The definition of such ecoregions is commonly done by
clustering average climate information to define homogeneous
climate regions. These homogeneous regions are assigned with
climate time series typically obtained as the average among
all cells within the ecoregion. By doing so, the influence
of topography on climate is not well captured and extreme
conditions, such as the ones found in the mountain peaks,
are smoothed down. In our case, the increase in biomass at
high altitudes was probably due to the fact that temperature
was not limiting enough the establishment of species beyond
their natural treeline. In a large model comparison study, Petter
et al. (2020) also found that no clear treeline emerged from
LANDIS-II simulations, in which the area above vegetation was
binned into a single ecoregion, compared to other models in
which each cell has its own climatic condition. The use of
continuous maps for climate conditions (i.e., each cell assigned
its own environmental and climate condition) could improve
how PnET-Succession simulates the effect of topography on
climate and thus on vegetation changes. Other forest landscape
models developed for mountain environments already make use
of continuous maps explicitly accounting for topography (e.g.,
LandClim; Schumacher et al. (2004)). This feature is currently
under development for LANDIS-II, which was initially designed
to efficiently simulate large landscapes (more than 1 million
interacting cells).

Even considering the above-mentioned limitations, the model
showed a great potential for a wide range of applications
in the Mediterranean area. The transparent initialization
of the model and the documented calibration can serve
as a guide for new users, encouraging the application of
forest landscape models. Besides, testing different initialization
data has allowed us to confirm the importance of shrub
communities in the forest dynamics within the study region.
Further experiments will analyse the vegetation dynamics under
natural perturbations such as fire or defoliators. Moreover,
the inclusion of climate change and silviculture will allow
us to explore future forest dynamics, and, by doing so,
deliver management recommendations to promote ecosystems
adaptation to global change.
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